аЯрЁБс>ўџ 68ўџџџ5џџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџьЅС#` №ПZbjbj\.\. .$>D>DтwџџџџџџЄŠŠŠŠŠŠŠžЂ Ђ Ђ 8к і ž &  :P P P + + + ‰ ‹ ‹ ‹ ‹ ‹ ‹ $0h˜ЈЏ Š+ + + + + Џ ŠŠP P лФ - - - + ˆŠP ŠP ‰ - + ‰ - - ŠŠ- P З a7ЧЂ Г p- ‰ к 0 - @# В@- @Š- \+ + - + + + + + Џ Џ е X+ + + + + + + žžžЂ žžžЂ žžžŠŠŠŠŠŠџџџџ Measurement and evaluation of a model We now have a setting and a systems perspective with its emphasis on interfaces. The next two topics are measurement and model implementation. By measurement we mean to sort out what it takes to make the model believable and insightful. We have to evaluate how well it corresponds to the real phenomena so that we can believe that the insights gained from the model pertain to reality, and help us understand reality. Before we can measure and evaluate, we need to understand what the real issues are, so that we are not mislead by surface phenomena such as how realistic the model seems to be to the naked eye. The measurements should relate to the problems of understanding that we are facing, and to the question of how well alternative hypotheses address these problems. Information density In the previous chapter we discussed that the world has no memory, but that we would follow it frame by frame. An obvious question is to estimate how much information is involve for a single actor for a single frame at the world – brain interface for that actor. With this estimate we are not interested in the information content of the world but only in the much more contained problem of how much information has to flow into and out of the brain of the actor to deal with that single frame. Information driving action Let us start by following the mechanical side – moving the bones. For a single frame we need information for each bone and for each potential direction of motion for that bone (degrees of freedom). There must be a range of values and of precision. In muscle – nerve-ending terms this is reflected by the fan-out into distinct nerve-endings as well as by the maximum and minimum firing rate (refresh rate). Note: Unlike our model, nerve firing is not synchronized into frames, where all the information for a single frame is delivered essentially simultaneously. However, treating each nerve-ending as bit, the question of precision still applied since the muscle cannot have more distinct responses than it has combinations of firing patterns by distinct nerves. So for 250 bones each with three degrees of freedom and a precision of only a thousand distinct values we would have 250 * 3 * 10 = 7500 bits for each frame. This is only 225,000 bits per second if we assume 30 frames per second. Chances are that there is more redundancy and precision in the nerve to muscles information transmission, so that an information rate 10 to 100 times our estimate might be more reasonable. Information from perception Let us approximate the information coming in from visual perception. Again, we are not concerned with the information available in the world but only with the information flowing into the brain. It is a ‘pull’ situation, where the information is not updated unless the eye actively looks. This requires the eye to update the information whether or not there has been a change. Let us also assume the same frame rate as visual refresh rate (which is high by a factor of 2 or so). We therefore have the pixel resolution of the eye as well as the colour depth (gray scale). Let us assume a resolution of only 1 megapixel (lower than cheap cameras) with a colour depth of 8 bits (low). Even with a third of the frame rate, we are at an information rate of 80 megabits per second. Learning: Information from 17 minutes of a single perception-linked action Let us look at the information associated with 1000 seconds of action, where the action is associated with visual information. (We are disregarding any information from other senses and proprioception that may also be associated with this action.) Just to store the experience, without any comparison to similar experiences, would take over 10 gigabytes.     Measurement and evaluation Chapter 6 -  DATE \@ "M/d/yyyy" 1/13/2007 Page  PAGE 1 /  NUMPAGES 2 %&Ь 4 G H I / 0 1 9 : ; U V W №ѕVWXb‹Эќ§ўєшйбЩНЎбІžІžІ––žxpžxep]–pUh`ЪOJQJh b‡OJQJhз*€hз*€OJQJhз*€OJQJhз*€5OJQJh`Ъh‚<55OJQJh`Ъ5OJQJh‚<5OJQJhtrOJQJh’ŒOJQJh’Œh>;ЎCJ OJQJaJ h’ŒCJ OJQJaJ h>;ЎOJQJhdOJQJhdhШ{аCJ OJQJaJ h>;ЎCJ OJQJaJ hdCJ OJQJaJ &'Ь Э 3 4 H I : ; V W №WX§ўпр,-yzп§§§§§§§§§§§§§єяяъъъъъъххххgdz6_gd`Ъgdз*€„а^„аgdtrтY§§пН+,-8IW`jxy‰™rопстухцшщыью*+45;ѓыулулвЩвРЩвДлЌлЌЄыЄ™‘‘‘‘‚znznanzhaq(OJQJmHnHujhaq(OJQJUhaq(OJQJhaq(haq(OJQJhОjhОUhз*€h`ЪOJQJhиЎOJQJhѓ(кOJQJh`Ъhz6_5OJQJhиЎ5OJQJhz6_5OJQJhѓ(к5OJQJhz6_OJQJh `OJQJh`ЪOJQJh`Ъh`Ъ5OJQJ%прстфхчшъыэюWXYZњњѕѓѓѓѓѓѓѓѓёѓѓѕgdз*€gdz6_;<BCDEHISTUVWYZѕяѕфѕяѕяѕфѕнйЮhз*€h`ЪOJQJhО haq(haq(haq(0JmHnHu haq(0Jjhaq(0JU,1hАа/ Ар=!А"А# $ %ААФАФ Ф†œ@@ёџ@ NormalCJ_HaJmH sH tH DA@ђџЁD Default Paragraph FontRi@ѓџГR  Table Normalі4ж l4жaі (k@єџС(No List4@ђ4 aq(Header  ЦрР!4 @4 aq(Footer  ЦрР!.)@Ђ. aq( Page NumberH™@"H aq( Balloon TextCJOJQJ^JaJZ$џџџџ&'ЬЭ34HI:;VW№WX§ ў   п р , - y z прстфхчшъыэюWX[˜0€€˜0€€˜0€€˜0€€˜0€€˜0€€˜0€€˜0€€˜0€€˜0€€˜0€€˜0€€˜0€€˜0€€˜0€€˜0€€˜0€€˜0€€˜@0€€˜0€€˜0€€˜0€€˜0€€˜0€€˜@0€€˜0€€˜0€€˜0€€˜0€€˜@0 hŽ00Ÿ˜@0 hŽ00Ÿ˜@0 hŽ00Ÿ˜@0 hŽ00Ÿ˜@0€€˜@0 hŽ00шŸ vvvvvy;Z пZ Y3HRY`bfqsyџ•€!џ•€џ•€№8№@ёџџџ€€€ї№’№№0№( № №№B №S №ПЫџ ?№@ F  Š ­ Г 5CттффххчшъыэюX[єћtоттффххчшъыэюX[33Њ Њ е е ж з и + , рсттффххчшъыэю;EHV[ттффххчшъыэюX[хdX aq(‚<5z6_ `trз*€ b‡’ŒОиЎ>;Ў`Ъ§NЫШ{аѓ(кџ@%Є­3ZP@џџUnknownџџџџџџџџџџџџG‡z €џTimes New Roman5€Symbol3& ‡z €џArial9‡ŸGaramond5& ‡za€џTahoma"1ˆ№аh3eБІTlБЦSlБЦ„8Њ 8Њ !№ ДД4dлл2ƒQ№HX №џ?фџџџџџџџџџџџџџџџџџџџџџd2џџ%Measurement and evaluation of a modelRainerRainer von Kіnigslіwўџр…ŸђљOhЋ‘+'Гй0Д˜ амьј 8D d p | ˆ”œЄЌф(Measurement and evaluation of a modelRainer Normal.dotRainer von Kіnigslіw4Microsoft Office Word@Аp@"г`7Ч@ZPFЕ6Ч@hЧі`7Ч8Њ ўџеЭеœ.“—+,љЎ0  hp|„Œ” œЄЌД М юф лЋ &Measurement and evaluation of a model Title ўџџџўџџџ !"#$ўџџџ&'()*+,ўџџџ./01234ўџџџ§џџџ7ўџџџўџџџўџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџRoot Entryџџџџџџџџ РF`Ъa7Ч9€Data џџџџџџџџџџџџ1Tableџџџџ@WordDocumentџџџџ.$SummaryInformation(џџџџџџџџџџџџ%DocumentSummaryInformation8џџџџџџџџ-CompObjџџџџџџџџџџџџqџџџџџџџџџџџџўџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџўџ џџџџ РFMicrosoft Office Word Document MSWordDocWord.Document.8є9Вq