MIME-Version: 1.0
Content-Type: multipart/related; boundary="----=_NextPart_01C89379.67477000"
This document is a Single File Web Page, also known as a Web Archive file. If you are seeing this message, your browser or editor doesn't support Web Archive files. Please download a browser that supports Web Archive, such as Microsoft Internet Explorer.
------=_NextPart_01C89379.67477000
Content-Location: file:///C:/268254C8/arch.htm
Content-Transfer-Encoding: quoted-printable
Content-Type: text/html; charset="us-ascii"
High-level architecture:
Programs and datastructures

Actor (mid-level) architecture:
Programs and datastructures

<=
span
style=3D'font-size:11.0pt;mso-bidi-font-size:12.0pt'>
-----------
the programs / executable representations -----------
- The ‘maj=
or
skeletal action’ component is responsible for moving the
skeleton to perform the language-based action, based on script
segments. The output is =
the
position of the bones in the world at each of the time-instances of the
successive frames. This
component is the major focus of the current research
=
The ‘hands&=
#8217;
component looks after grasping, writing, etc.
The ‘visual
recognition, reading’ component gets and interprets visual data =
from
the world
The ‘hearin=
g,
speech recognition’ component gets and interprets auditory data =
from
the world
The ‘attent=
ion
management – conscious mind’ component works with high-lev=
el
scripts and directs and controls skeletal action etc. For this research we are assu=
ming
an actor on a stage following a memorized script
-----------
the data representations -----------
- The actor carries
knowledge in the form of a language-based script, which in turn is
interpreted by the ‘attention management – conscious
mind’ component
- The ‘attent=
ion
management – conscious mind’ component sends lower-level
script fragments to control the action of the ‘major skeletal
action’ component
- The ‘maj=
or
skeletal action’ component moves bones of the skeleton over =
time
and relative to the stage – which is the data ‘in the
world’ – at any given instance, and relative to the
stage. This data can be =
picked
up by a camera or by the eyes of an actor (including the eyes of the a=
ctor
who is performing the action)
- Auditory and othe=
r data
is simplified for purposes of this simulation
‘Major
skeletal action’ (low-level) architecture:
program(s) and datastructures

-----------
the programs / executable representations -----------
- The ‘script
interpretation, expansion’ component is responsible for interpre=
ting
the script segments received as instructions. The output is the most specif=
ic and
detailed script (symbolic) components detailing the movement and posit=
ion
of limbs for the specific action.
- ‘script
synchronization’ coordinates movements, arm swing and leg moveme=
nt
for walking.
- The ‘visual
recognition, reading’ component gets and interprets visual data =
from
the world
- The script-based
symbolic representation has to be translated into a hardwired,
neuron-based representation that signals muscle action on bones. At the same time the differen=
ce
between present limb position and goal position has to be interpreted =
to
regulate the action in ‘real-time’, i.e., neural firing ti=
me
- The action signal=
s are
further translated and expanded, and feedback is incorporated –
through further stages
-----------
the data representations -----------
- Instructions to a=
ct are
conveyed through script-fragments (language-like symbolic encoding).
Once received they are beyond
‘conscious control’ – (unless interrupted, or possib=
ly
with new instructions)
- The
‘script-fragments’ are further interpreted and expanded.
E.g., walk is interpreted into
swing left leg then swing right leg, based on practiced and habitual
knowledge not under conscious control. The results are still symboli=
c but
very low level
- The ‘symbol=
ic
instructions’ have to be interpreted into neural firings, i.e.,
hardwired signals. At th=
is
point timing moves from subjective to firing frequencies, and finally =
to
parallel firings across bundles
- Limbs and joints =
have
positions and orientations that can be represented in Cartesian space
(relative to the stage), in polar coordinates, and in frames relative =
to
the orientation of other limbs.
Time and timing-representation
Timing
is typically discussed relatively to the world. If the moment of some activity in =
the
world is time zero, then the image of this action as recorded by the camera=
is
available slightly later, say at time one, and describes the past. The neural firings that caused the
action must have preceded the action and thus must have happened at time mi=
nus
one, i.e., in the future relative to observing the action. The script must have been interpre=
ted
even before that, i.e., at time minus two or earlier. Any conscious thought and decision=
making
about that action would have been even earlier, say at time minus three. If the decision making involved vi=
sual
information about the scene on the stage, that information would have to ha=
ve
been available to attention and planning at least by time minus four, and m=
ust
have happened on the stage at time minus five.
Skeletal
action is continuous, i.e., the neural activity continues even while new
instructions are being processed, and while the actor is visually scanning =
the
world, listening to other actors, and consciously planning and deciding wha=
t to
do next. It is therefore safe=
to
infer a high level of parallelism at the level of distributed process contr=
ol,
i.e., the distributed process control components within the actor model. It is also plausible to infer
parallelism within the component for major skeletal action, where low-level
script interpretation parallels neural firing sequences. We also know about the diversity o=
f time
representation. High-level sc=
ripts
(instructions) follow steps (first this then that) without precise timing.<=
span
style=3D'mso-spacerun:yes'> Lower-level script instructions,
especially those involved in coordinating such as leg swing and arm swing,
likely follow some rhythm or beat (a more subjective measure, like music).<=
span
style=3D'mso-spacerun:yes'> Timing for neural impulses have be=
en
studied and seem to show their own frequencies and rhythms and are generally
much faster than music beats. For
the world (external reality) we have clocks. 30 frames per second is fairly typ=
ical
for animation (24/sec. and 60/sec. are common alternatives).
Just
from this simplified sequence and discussion, we can see that timing, time
sequencing, time representation, and synchronization are important but
difficult aspects.
------=_NextPart_01C89379.67477000
Content-Location: file:///C:/268254C8/arch_files/image001.gif
Content-Transfer-Encoding: base64
Content-Type: image/gif
R0lGODlhpgIxAXcAMSH+GlNvZnR3YXJlOiBNaWNyb3NvZnQgT2ZmaWNlACH5BAEAAAAALAIAAgCh
AiwBgQAAAAAAAP///wECAwL/hI+py+0Po5y00oCz3rz7D4YiZ5XmiabqyrbuC8fyTNf2jQfCzvf+
DwwKh8SiL4BLKpfMpvMJjUqn1Ivxis1qg8iq9wsOi8fkslmm26rX7F73DI/L5/S6/Q5It/f84hsP
GCg4SFg4qNeXqLjzZ+j4CBkpOamCuHjZ1ki5ydnp+SlniTmqpQl6ipqqutoiSvrqxyo7S1s76wqb
C2Rq2+v7C0yHy9NxpLvHG6y8zNysNMz4A702nel8jZ2tnTLtWl36mrw9Tl7O3M0VHY1BzH7krtGO
qOOOJW6On6+Pir6rLlAPIDE3AwUWNAjwm7R9DBs65NRP2r95xhAS/KdO4cKH/xw7erwTsaIeihe9
HcxI7aPKlSzBhCx5spjFg5bSaDzSMqfOnTmI4LIZM51EjAZvuuGJNKlSFC8nBoU5dCZQNfeWWr2a
tClJqU+LXkRolBjWsWSXduNQcWZCURnkuT2ZpWrZuXT1hT22SG7dvXyx3cWbSG/fwYR9/QXMR3Dh
xYxTHUac6UPjyZRBPYacskPlzZwlXca8pQuJzqRLB/oMOu6BDaZbuw6VGvAbDXkUv76N+wbq2Eb+
YEDwO7fw4Ut28/aZQFNw4sybvzB+XIje5c6rW68APfquC7aveyeeXTtO7N2/m3cdXrzYEtTPu2c+
Ir78+fRBMC3/Pr9+Qu3h1P8XsV+A1vVXhQeYeCBggrcR2MQGvLGmYIScMViDg+q5QZuEGi5G4XMB
XThEBhuO2Fd/+CXXFoihiUhii2RR1+EDKaqYWIwu3rjSbxlOMCONedmIY5APQRjBhz6OAmQZ/y3J
ZJNOPglllAAKGcloDfR4ZC4sCpNll15ecSKVZmi2gJFfahmmE+mdyaaWYj4iGXBrthlimsXRiaeX
dr4pzJx51unfn4KquCef/vk5KKBKJspodIUaSoaZjeKVpJqMSIlppppuyikIAEHq2aSOjjGVqKaG
8ymojkh6qmyPulBqq7IGlqqq/M066hex4sorVbXaCgirvVL6aiVEDYusH7//AmsHosn2VuCxz05r
TLHM3kntg1TsKo2waWXLJj3XNgvOt9IKFVWr1rJ37lt+OAtLp/Das+y4Z4RVE1dgoivruti1m1DA
7375QbwGYiauvXH8RdFWvfHbr78ScIuhwBjCE8+lAbHjbWAWioeWLgkrrORhDX+1FkEcX6xWv09Q
3I7FGrdlYchrdUxNxmd+fMnIJItx2Ug0DX0p0TLzKrGM7dbDNMZFawx1yj1jKajOffj8s0vIGL1r
rF0nm7QDMFvc9C4jzWMTdFSbunZo9Wa97dVOgSUSVHAh3eDSNptZdsxH5zwvyDhL9zbcUexGT7Vw
eU1U4NqFXea5Bf9NNtpP/7Mx+KyZV2u4F8YlrvLiGH09LeTJSV5T2mlfnmLrDG+ONL6Fd86E2lwJ
bbdXKIP9DOrvyOM6xjrDDjC4lz9sOu0QZGfSV7jPTXmvyRtAMd9nb9w09qU4jufgWCtf+4H+vOMw
2qC3rHkSY1/IfdXIfyRv/PLP10qi7WurW/GOfsb8vpBV872G3I9t9RvUAFOTvPU9Tm558d//fDI7
uxhPEY864AStkT/0gYyBDVQWAkMUwXxYsFGFGuEFMZdBExKOg0LDXqmAYr6Knc0ibUsM4abnmBMm
hgUq1GEpUngkxI1uKi182vlwt7qiPC89wwggQ3pYtRVA0YeqqZD+YiPEfP+tI3QCA93JBkISh1Hw
hvCjIgqN5T7jQU6BD/IYDcEYusQR0UFfzAjPxpgOHPLDjClBI6U2aD8bsBGLLAxKGJPILSQaDVV5
LCMfQ+PHPy6QUWEb5AdtWBBFTmR1S7Qj9J7XMzJ6ZIp5Ug4vTGQw4XmjR/Tgm8pcqLrrNexDWKrh
gRRQKRSdToOTzITdrue8IVpOlixDEgj1eAqFWC1dXWoKF+TEoB3lgZEoGd8m72a5amrzjazj2t1I
4ZstkWc5lrzkpAIHDSfu4xvl250k4/KwWNRGmtBk0Zq02LxFsgVl1RPd6KSlRTfNU5zcoU05zVnK
b4ITgsi0jAeDqVAtue3/oXV6ksjg4ROmubOdLVslKPvpTiTJ74rHIeX2iEcNZTX0E84USMZambpZ
mo2W2QMmGL1WS2gNNJoQmlPrUPfCjfITeDHB6D87arN4UY9I4xTRQbFoUkKxM4T4aClOvXm8oX4S
omTTakTXs1SewmihufMnN73aUeipFaT/q6cJdvTUB0X1cRpRpwRBOD6O4hNiMAOl7o4Kse3oskzK
IWsmrbnWdIlRmwENI2J5SUFc4qc9cS3pXBFoFLuKEIJ51epeM9pXf3I0sBthimG7iFiNYtOzv6wY
YDtJ0h3SoLL70yFKNVtVzg5FryFrolF/ItrdLROyVF1eOGgWtYsdUahd/xmeKulW1JiaKy9WJG4Q
UWo/7LrUkSvcLWsfG1xrfnZp0y3tCS4rKp9WF71g0m643LsO7nZXn2UNbVkX+VcNBlQ6kXwkHpG0
3vTasnsDhudKPTHVrpwVtopl8FY+ilbi2om9/h3PDGjbzAL7aLhyO3AnlFlLowozpDOjoQvdpa8S
k9jC561wuAIcOw7TVcZj9DBEwJVg5PTXxTRaY2zPmVRi3VFkxS0HhY1JUf7umMcg8rF1pRefd43A
UUUmx5GRPN8QSZHJWXLylWc8OYJVeRxf3vCWuWxmGKOZbWPeRpl7zMMguth0GF7zhtusjTcTKs7q
WawvzwlEO6cXz9nQc/+TC9jLJzswkIEWNAkJ7RdHC/bMU5ulR2FIU98+V8VuiWFJe6JoSXcZ0tcw
NPtgFcprAtS10E3rYZvrt1aDZnqxnJ+tb41rTZHaGabu83P+u818cnO/q26csVPcVvWJ+lQ23kSv
QfZrWuVO2I5lbnl/Wl8E9m7Z6ZXvsq0lxGmntiRB5rSnSSeTZCub24AeJbsZEQPUjNfVR82sWvOL
71mH792U9Lao1yXvun1Tr+VtbbaRTana5XrhDG94k1Ti8IhnCg0/jgqEFctVaq91iQyWDfg+XiD4
sjKk2B4xF2YUvPOlzNOIaTbIQa7hYZnQ5S8HX3CendKvJrzmPC9OI3D/TpWYK7XnRNeNKYD+J5oX
nWQdgq+kc7n0qPNILkgnmNSv3grFVL3LWO86N7rj9Dkr3euggvou+c1isqu9SBPeumXXDvflvcrt
2o673RlgdrlzO+93LzrfJ0Z3NPV98Kuhc+APNHbC3+jvbz381RKveAn9fKVChzLkIx8he7o87FW7
POYlr6OxV56SjP+88piqK85vuPSmtznqXaL6Gbd+8GQa0+j7TNDZ2732C7s9wnKve/RIXH6rovH/
6Bl83DgerJBI93Ffn/zhLB/eLA2BlOMUffNMf9fND0H2NbR9z3+f9tIbv/nXjSvxnz/u4V+/+y9c
/vfLH9V4m7/9lzzT/9iL7P78b3GSv6x+/Rd1AAReaSaAB1gkulVRLSQ85PNKRPVDCCiBYqOA/JJE
XfVJowUmE8iBkYNXWcY4ryaCCCdPHWiC0/SBUgZY+NZXsBOAJ2hzFThTwUZuNeOAocZ9MJh8LRVe
9WaBBadkOjiBBOhd4jaC+UVsJSiECJhjG7eCDsZPmbWEQ9heIbYyZ2ViYhQPUjiFTBh/XSiA7QeG
YfiFY3h/YmiGZ1iGaSh/aMiGbbiGb7h+biiHcxiHdTh+dIiHeXiHexh9euiHf9iHgah7gEiIhTh8
xHeI3/eCi6iDjeiIJwiJkdiBk0iJQ3iJmYgGmsiJsNKJn1gJoCiKb/81iqV4AaaIisuTiquId6zo
isDxirFoibH4h7ToirNoi583G7lYik7Fi70IfL+oidAnjJTIe8V4iceIjJGIfMvIjLjojK73cNF4
hvRRI/RDjXDnKRmGINn4cc7HNlbijbZSbqVDjOO4IUPGR+eIju6hjmvGju0IHr7HZc0oj69hfGin
XPcofNvHjfy4GfSojzMFkIUhkAMJWgVZF/qHkCenkGPBkA2pKA+JFBEpke9CkTphkRfZXhmZIx0k
cAXYTBXncR7JEfonbKQ1khlmkgJ0WtalZ1cGjS0JNNR0b8iFYslVLTZVTCjWSp3mFFaIg1dDk+bg
J43lPB3nV8dzca3/NkM08UIOdj8zWZRT4CxNOW8siHH3pS9amFgkuHNVGWkS9VohuU1q4ZX0RoMG
d5YDRJViaSlEVpY1+FLTZT51yUwhKILVpnNDB5fn8EdIyZUk6GdqiYQhyZckGVl/CZjHoHKyppWE
KVzFNoLjlZhDuZiMqQzotJUYuGCPhZVYBZVfCRYH9JaaCWqOmZdXqJOtiU1GIpSv6UUKhpP6hprB
4I96gkW3iZscqYAWdJq8WV2+eXIbqVPCCQy5+UjBiZyCRJxw1pzLoJy2FZ3NMJ0TxJzVmZrPuZva
yWvXCTbZ6Z3PAJ7pJ57jqXDcKXjoaWTlSXrsaRfGOZDBCJ/t6Z7//1ifoySf8Mh6+ekX++lf9Omf
EHeQaGaPA8oT7+ho8YigVqGgy3mgDVoi+UgtDCqhjQGO5mmhF9oaYXaNBXp9G8qh1yECVUihoIV9
IwopDaeiUieiLbp2LwqjXndz/TmjNQcjNxp5NqqjPcejPfpyPwqkMHeeQ+odQmqkp1ekSVodSMqk
huOkT/ozUSqlwDJ5VRqjorGkWLogocelaiejX/qNYSqmnaOMZep3Z4qmSpGIbdopa5pbz7mlcIot
xDmndIp+vnmneJpBdsqnZMade/qnsxWog5pnhWqoY+mniVpqiMqo1imD+daXmDNRWwNJjwqpKdiX
PlWpfxaBmCqd//8XT1hGL5j0qaDamxXoV7UpNT25k+VTcltENcuEckB4FKi6maL6Wko5cFAIRw/4
hERTmOaFq4Yxqg9mlpE5mVp5megmXvZQrKmqW8h6cEmYlVKjSbJZbDchqNFqWg9FrZnUW3aJmL91
hDbVT5vTrd76VvsimEdoVuGFlKt6bKsUW+vKrhagTCmWlaSzrP66XNX6rBuYr7ZQV52pWp/ZLcLK
akeklLA1rGlXsKxwsObCqrMqKTCVlKz5RlaocrW6Yrc6sbcgZ5T6OCNLC5f1GD2EryhrXHcWdL7m
shTrqDObQ3Jqs6twnyWZs3uEsz3rs4sKtA71s0PLUjVrtDdWtEkZq7RCy7TOhrRPGypLK7We4aZX
O3FVSwkFAAA7
------=_NextPart_01C89379.67477000
Content-Location: file:///C:/268254C8/arch_files/image002.gif
Content-Transfer-Encoding: base64
Content-Type: image/gif
R0lGODlhKgDSAHcAMSH+GlNvZnR3YXJlOiBNaWNyb3NvZnQgT2ZmaWNlACH5BAEAAAAALAMAAwAk
AM0AgQAAAAAAAP///wECAwL/hI8JwaEP4xJUOIlfqPXmv3Hdl4XiSEbmaaXQyrZuArPePMXi7dYx
n/LZcDndDif8IY0nICapc6qYwyC12bseSVCjVNGNcrVYEHn7PJclYW9JjZ7CUfI5XWPnfIv5fZvp
l3cHJkjx9UclhQj4Ujh4sOiG5yhDSOkUyUhD+ZgpieAptpmoBRSqNMppymmYCkh2cypqIItKy3r3
hxiL2wrZW8mnCgrM2+tRK7rLUHoLLJOMGl0F1WChdpEUsn2WHWUIDutsE77oHdUQeV48fty+k57e
3GVSX1q9E56Ir6cPSC/v2r1nHab9MGgDYEBY/DZkYvZNoLqG/q5AjHiRIUFD/wibVIs3ERacjKS6
mcP2caHGjSSPdYTnBWRLdK/06eLXoSLNiDkF7vtnzedPli/1KAy68kehmT374LTDlGM8lBstFC0I
FOlAjEK3KpVIlWvXoRgfXuVYdaZMrRbPWk3rNuqluHThesln0i7RrHIT3hUkt1bgpSlVttVLsO/U
sF+beiXXLy9Pnf/4jhSGy8HVdT1ldnvHinNm0I7HSvKx1hxpyuIwD3Nd0LAmbYBXm25Nu49tz61h
1/7lDnhCh5+F4+XWzHhk5BaJQWaeyPnwvnFeGhutvPQuV1Z5R+fO+rv0S5bwlp6lPHXy8efXZ/fo
/j3a3uylFi/fPXyV8jBUT2eyf5st4OVHX31YxWfggZ/8p1sdDTayFBuO7OFbc2k86OBlF0L1BoYZ
FvghghBq2CGJJYIoITZZqGgFiy2KuKGFK8IY44IzakJEGBTWuB8RFe544ho+rgakGT0OCVqRQWyj
5AwMzFAAADs=
------=_NextPart_01C89379.67477000
Content-Location: file:///C:/268254C8/arch_files/image003.gif
Content-Transfer-Encoding: base64
Content-Type: image/gif
R0lGODlhmgImAXcAMSH+GlNvZnR3YXJlOiBNaWNyb3NvZnQgT2ZmaWNlACH5BAEAAAAALAMAAgCU
AiEBgQAAAAAAAP///wECAwL/hI+py+0Po5y02muC3rz7D4biSJbmiabqyrbuC8fyTNf2huX6zvf+
fwgIhsSi8YhMKpfMpvMJjUqn1Kr1is1qt9yu9zsMAMfksvnMEILX7Lb7DY/L5/R6V4zO6/d8h9oO
GCg4SFhoeFiH17fI2PjzhxgpOUlZaXlZpei4ydnphwkaKjpKWrql6Zmq6qh24/oKGys7S1tre4sr
I4C62ut71moqPExcbBwoxPu7zLwTfAwdLT1NnZTcjJ2N8Vzd7f0NPnmtTV7+uRuerr7OvjZuDh/P
3U5fb39f9B6/rz2PtAEFEr6BBE2ZCKWPn8Jl/o4AdKKhoMSJkkA8sRgp4cKN/6oa5ksm0FpIiiRL
tunwBSUhjRxbbvJIJGJEIxzC1LQ50+aukSZ7+tz5MI7KRLtcGu0EU2dOnABVeoh586fUkkEHVYXD
8qjWPElzep0J9s/DsUunmh149VBad0W3ut3TVazcf3Oh6jyL195acWVTtn0L2EzcoX132j1cOK/i
bokxNc6SNbBkHTBD3KVZ9+7jxZyLbQb1mUrkyaQrVBYYtpVqqKpXd34NLbQo2QH/lr594TRm1mRT
B6UNO3hFnsaAMxmNO3maMHSbM/0od6lx4dSthiMuBbny7UGYi8wFPrz46lixS5vu0Db39Qoqk6dk
/j2W+NToL9HOPrl7+Rn5p/8cCYl9TdgnYHoXFUiTevnlt59/hiDo4H1KiMUFgXJAyJwyC3LXYITW
eTjfhDHdAREdGOK3IWkdgggIhix6Zw2MGQbo1Yjo0EgjOnZF98+MF02BYoqSrfiiiUUCeZyOH3lH
oY5gKdmka05yE5JrFkYRpJCAEXmkUF3WdlwyCWaYD5PBzCOmjQEqySaTNpZYm4Za3sbll2646CF9
/lC45o1+TllTn2s+NWaTP/4o55wqylimiOnhyaiRYyITaYh2Sjhgo2ymCWNYbk5qaFJOanpopokq
OmSlbU5KqhWQVqgWW5fGCKeatsroaahmvkmlgYZiWeKpqG6pqnmonVLIqyT/gqHse1feCmVZUUK3
JI48+vomsKYOu12d2Y6KE6+sfftnVeZKxylII441ro8SXhvujp0aJm+ts7ZKSrPavsutct6K+ym4
Ajf0ZMC9TomYwfPSi12NCiMc7aey6ftdDOlQ7KWqJ23bL27/LiwwwI1WCTDJD0P58LQab0ruwbqi
bC9kQ2lB6HkG7XVnksJ2fNTHZPLqcLQFa+qUgQOXvLDKq5JKGLsnH5zpfDgzO/UoGKtjrII8E7t0
1wn2OTK0BLdsNNQqKw11j2SnjPTK+AaEnhdVX3L1Og1rvbVbPjPq8q1Di9y3xC8HfrSjSWsmtt/P
Ylm3zMKcSNDdO+fN0d5t/8IL1Fxjtxtv54YNjnjnL7d6rtBm1xs13JbETalos7FBXJaU82N5KY2/
PcfiYSJ0O7OZvC5rj5PPrlDtoJErtx2/Ypo68I65Ljq9SgGO7qaJ9ca5pcITH5jxoLHuGG1gs2r1
8UjCXLCUaO8Kctswa/8o91zz1Pu9rF5V/xv50wx92D+DTDJBkc5/dYsd3uRXuWLZDyvQCZpBnne+
ov3vfa2RychmljkLuq1/8UPgVry3QNGMwGvmW53rlPYnCh6ufUYTGaxiNDwPlsMj4AuhvT5AwvDR
LYKJUyHDevg+9y3PVSKKoQz7YSYM2jB5vBmi1fYHv1LdJFSli44VqUWXzP/8JoplMuIRsXEmHC4x
eEAhX75qmLOMcRARBvTiF5nxDJRA0X7jwx0E5/g72CGPeXg83/be2JI4BmqMZGSe8/roR3fMzSGL
bFERARnIGTmNkEyECCJddSz4wKaNkExgGX9IyUoeaHUAMiFnJNfJjexpg6HMjgiHM6FLgmkxqExl
8aRnxlZeAU+NPMlnZFkqogyjlrbchwZbqEsuAqmXNOslMIOZLAg+spjyAGEyaXUKJe5SmzFjY392
yC9qmkMMpxGPOc9JC1/qgn+VaNa5+DSq1GRvJRwTZz8ywMprngWNetSeywT5tFjpzJ7Z0EB3cqjP
vDyzm9mp4woHtlC1DZT/oHDUhKgSqlBwhol+xyQay6rET8ggiqIMaU8+MTqViDZvXyl0XwodKsxg
kdQXyrgoSvepUVeuq4fpy5ZKBSS7mQpGQza9aUpVmiQRfgV0X+ENPeMkVE8YdDkINWpKpZnGEo40
qi95QFGt+hOkrrSQ7USSG7nKA2F9Faw+EevuNkY3yJ0VrdvY2VrZahK3jpUdvDwgXccwVQjcFa8k
CSkD6wGpoP7VAjEcLGEpotcBRfZOr1LsYidgxHKic7OcpcGFUqA/22GNf3O9rB+8aE2j9q5mcIvK
sp74jZBa1rQNCCwFUnvTq7k2m4ad7CinYdgb0fYROcAtSvXFzG0qK7gm//LtK5NX2uEGgTIKvBwR
c/ohO67xuYmorGec+1u/RHe4ts1NdTPJmIqQlXEr6WtxmEvZ+s1WuuU1b9dW6Y3J3s5F8N1mHo+R
3OZCcb60HS8+78u37JmrXLj83EbXhSMsRq8w6UJXhFGnLkl2qkbi2+6DPPxdvQZ4l36Vbm0fcV5C
rS90Q5OSRK300H9GKmiEAyiLYxy6vd4HvA2WLGP621rlldjECagvdRFs3SACcMkrM1nhUMhClgVM
iG1bsRMl2mPtepOl1eDmHXZrJANz1chHpl+CM+hUHEcZM4Ob4hTL1kIJetSH4LLyHuO8Fh4jM6lY
83JrR8wWMQtV0AjYT/8mnQw6JkcNyqtCdJz3vGL0qfnKeHatnrGs44u9oKyEfskLxikYpqi4UIqj
MvuwCWNJs23Gc7az9M7G0zuzWQQnFSg0H7sueFhGah/oBZl7EMZRE616ibaekid8Yc9tkdUS/qSy
01VqobnQkDW7NDZ9TBVr/7GiYNZfBzyNhmA3pXVV1faec9dALWPXkBMBcmg77YxuW4UDfIC3SQHV
0cMeG9MaXWiOcum8TN9D3ju0t2kA3SIcCAYuov6bUKZjbs8Jmc8PnKVECG5Cg0cA4Wr5dW40XuRX
UxrXsq61ei0eOT9rEuRpcDcyPC4BmAPhmDAlubojfu5Ytlvl4hjyI1z//iCZp6EPkwS4zTeIc6Nf
Gx8YeR3LAcDxxwl9unDBg3ExGp+kq1vpiB2mz4urdbmp9elQt2h1j87vnCMkkZHzur2jDlwyT50y
vLh6QvX0OBDrxe2ADfvDi6wHuZ8d7Vw3ua3Ze3G++wDo0Zh7vM9hZsKrvfAnh5Df/ZJ3MV++RVxR
6+Aln0/Gv9Y4m3+taMcr+i6/fXJ212eBtI0aBJUeWZmnu3Ac79XGfh70ssfqYaTIdMXbtzqoR+3u
JW95UzrHknC/GWuP58bU8/WsuD9o5EFfcpHAcsfMb77zvY9u40cos6Vt/TXd+2FLbhT8tuO5ehs7
+7huHPXHJ3xipZ9F/8THkv3txz+shhd/CHFai1d/aOdOlxQ3m4Fx18F/XsJ6OoUvQLV057EA1Qd5
E4h8FdKA6eZfOxaAmRB2+JF8XUR5BQhghQZv5pdMjbOAf/ZlbzVwIThk/EWC2Yc7H/gPZRdqSIZ9
htdQPCdGVENxVoUc6NdSyXYjnFJGOJiDwKAxnQWFUdgC3UVruRNRUoiFu7ZtFUhiikZF1HMxTlhV
PZhy5NYZnERV1+VDh+Y/NniCZeBYZIhYwMSEkrKFhcZOkTZl+BWGZBCHckgP/ueDkDVNIUdaX/Mt
aHJmWOOHgwiI7SCIdYhuMHRvh1iDSSZAW0eBM+eIjzh9lwFXr4GGeP+ILMeyPIqYZHYDWJ3oiXbT
guwkioV4YC9EPqNDQZJ4H5w4hq2IFhs4eWYxilCHeWa0YD5Fc6pIgLvIi3rhfsrENECmdcF4ebjo
ECimjMsIic/nO3zkhhdTiJtHjdUIbKyIjeDQjF3oKOiFFt+oWskYjuXYTPmjOxKWYc9GRWCDOTHV
Qe9YH+PoNVkIkAGpjV8yj0kTR7FGZ2ljh/sIVgamgrrEj8o3hKbmZEDEaBO3PRHZj85ggjankZrE
UKombcw2Ovm4kF8jjGxFfzzYgx/ZczFTY9hCaorWjcMYP9M4cGnVkSTnkidXK8UWk4Ujks/URogk
VrMXXQ/ZSj35TQf/EnslaWFA85QmOYnCY5Tp5xkcyZLYx5RbFoswJF+9ASALlmddZGEVlGYa1mzO
pj9aeX0tuUBdSYuPslpteD+/V5EOk4m4gpeAU5O75JYY2ED8VJEX4o10FBxFWUg0BCoRyDSVcoo+
BZklOB+BmXYD1D/+BolxmZhFtD9Fl398eZfQ8jbLNmWJiBWW+YvquC+ayVecuUmeCTs9FZq/kpfD
5kCTtJeDKXpEFXMdyYatgUXsQmO4lG+MdGFOU4/T43WIqYaYQjGFaZhguZiTOWfMJpozmYq7+Zen
UHYe8JtbiZy/EZR1QSUHmWUUqSYy1pz38pnk2J39ZJXVuTTo5VDj/1NKSmab1hmfQPKd9Baeb4lp
p6OdkaaQjVmgXkgMcomV/RSdh/c1+7Uk9TmhUvaYpJk2uemX8AkRGfBtASqYqGk6V7SGplYxJGqg
/dmgl5I1nuImxIZqUrlTsCYtSgiLdDmbGpQWg5SdkimV18KjFsqWQ7paQQCeggWcCYqgQAlE/OZq
dFZx7vlWtEml12dl6AkxUaJbsgkiRWqkiqBwVCWgyESgqTaU0RajWWqRoChazmk4sHYyj/JSibOX
tnijEcoiXmqk7WFkH1NtzaajQRkxTlRFN4Yr0JYvsPmmftOkiIioEFWn0yZS1ElYdVdbtqWUWYVH
IweSUsqNEtOoJP/4qOW5oXOJkgy6oHVFTqd2jRjJqZO6b+tGkHwGp0L5Yq2GkOizpZSIqsMUb2li
mqRklIIoSixKq4y6YY9xisUJqofaqhOZa736ODrZFKDJe4o6WqZ3qni1kiARpHDpprGloiE6DuAl
rU0YmE0Hrp7KgAU0TSKmibfmqzqZhAPJRH9Ie2WlrXZyrs+JkrP4VBwqsFZBddvwHPF6XQ/KZRJ5
p/zamZQIsBo4KBRGnDUaO2KZluGChJznodS3k5OqsCjHsLA6K/36Xx0UsbCqRVjGrBSKodfZssqD
ghboM1vkotFTZ8Zpo/QYlZ8URtXyYO5ij/SYnmznsNulW5cmjdr/ioqjeZrSqZ9nxpq5M7NhCqKX
WTKpBqday6YI+mTrKTifSptfyz7uhK2ZKXYCp28om7L+2rQX+rTnNpb4NbVCUWRHerWrCWerhqUH
WprYKahOmqub86y/mKf+1F3ZxbZtu0Zv66NJ1G1RkZxSa693wqcAilk7aZpaqpyrRkLWwjlPaizM
6hRv5rXoWLKf6icVWzFpFiirsVRoOZ13mJIkGzL5KZq9F7WYmCwVaLV5S5llKpOBu7eNNmluSDhr
c52oa6yL+jPmyUhKAbvmKRPU27XyubiMC4F7yLJ2mUMKSbeUWSEtB3WMlaQBpWp9y6p722LHW7S6
6rnEe7LNW0QM/walz7YbmqE+wnmSXZSG6Lifj1aqF2qbX7hmlitYpqG5LQsv6PmFQ9RUDay+zFmf
HIaE7ySpelckLWq/dnqwNYoY+5uxoQWxXCgz+Fmbz3ixS/UcEbaxqblxCiyeWImANmiuZyunwEqT
bNZgTcUwmSFxoZi9pLiOBItZt/Wxs/uq+brENxyuaSqUICW9U6y/9eii0heMJvya4+qdtwWASfxZ
dAhx+squzqumkEmeN5srsXewhbuwueZVgeiLjMNYmTvD9ofDfKHB+TrElUiQOmgawIuwKpnH27e9
65Uh4dklVod7D3jHBljIGeFcWXxaGwymmBvDSPrIR2eyGHmGsv+4cXl6t5ice5o8phn4xLQEyqE8
fpdLyn5gyiHKyZE8m423yvPHH336ygl8gVg7y6msttC6oLesyNQhJ7vMy7UFxtxKy7IczIlawh93
e4kCprnRy4aLa52sj98hOhMjTxOkVf9qe6fUWB+nzJvskc2conCipW1Ku3WlUNFnzWLqzDypzqG6
aKQZcOIMbNrMSMW1DfScRQJJ0Fmozqbbqsm7z/7bdz1hgYBXxybsz/CIzcwLad2p0GsXzTNnsg/d
HgF9bxNN0YNstEuawWpzkb7H0EOVcoBlzoYo0iM9sL7czaFLqw600HAcbsQ6b28H0qQY0yP9nrG5
0Tv9jr/rhz//fWBBTdFD/ZXv3HlMiNQLN8/WJ9NtRcJP3cdVx9O8RXYQHdFLfdV5tbanRMyM8IrJ
MtVEV1dWPdaFVdaqXNRSldYPt9as8NP4+tbpldUiW9J5N9e+do7xeNdSBdApydTYOEcjmHiB3Qxa
qFR4Sw7UJ9Z73dh9La8Dd9bVxAIuMVer6saWDVxqRKkjmYRmaSswqtI6TWRVfXB6LdqxMbval7Nl
mzBn7GJkvNWtncyMBduxXRyzfavGm5DxG84rzdthbb6hDdzBTdrDjaIbKr8vCdXJ3dsynNit2EdZ
06xRjKy2qtv8bN23Bc/Z7YnbPaVhW9xk29VvnMjjrdxe3N7N/y0I6P0uD6ygUfyoPrnb8H1i5jvf
9O3JcS2+leTE1e3f/43dAr6ZVVnPBs7FQizeCZ7JSMzcDA7Nwl3RXwZ7m03hFbjcAY7hBJ5Vn+zY
Hz50Fj7HI76iJI4XlIzisKziF87iI4vZco3gMf7RdrwnBe3jUqg8U4i9Gq4YMK7jKX61dYvH8VXX
Aw1+ssTdxWo4/mqTE37kCh7LPcqVisR4TU7TiBySYV7gEe7X733l133NOH2tHJ5wrzfTZS7mwrzh
Y07lrH3mMp7lBwzJ8Rh0erLi7IYt3+xsy9lRhYqcw9liFryWgG7nd47kccy7clhZIh6aJ+p/3D22
7VxnidYXov9rkHHK6Gbu6Hh+zae55twVV5Z+ldC5pmeqZrTiaK7O2P096uWb5zsl6fN73BlUw6xu
MAhtNsA+0ID76s7k4bVu66UexKisf2c0a1CeVHpY7MXrUu5L3JlGYBTueRUMiFL84Nj151OO0q2+
zuB9xmSL7gUp6sj+6BLtzPijgCz4engHg6jrbqD75Rp9vc8tkxAz6D8KqHlWYdCLs6aN7V836qfi
pxZb7xrY7LTNfVJToZg3kB+4xEOO47TO7tQMnGksxg+/fDon8XZdhZ9p34pr1ifO7hmg7CUnuR4P
xJa2nKKGlxds82IJxE00azSvs8TWSBUkLeUh57q+zRlv5Sv/D9Yh/e7Q5htk0URWNJVO3/M+jGY0
L0adXm1y5GZP//Shge9vDoJVXvRFfuwrf8wd/zkZ5sPfjD3Rq786G8KXQfVr7+0/bCX/1vbk2U3S
Edkc+LpU7GY1dIUPm+NIn+wwvfRp38NSXz3puVszc/VAT/Wuu8K5DYo3+8MTL+75nr9XbMXC6fn7
ntlEnlEqb/hEhfbVK3JbD/dF2zTvxPpBeJaYz/VZ1vi3/29Db3jwnr+Z7/vNN/hEXfin7+40zfb8
G/px74Ggn/Nvv3yMD1J3H/KYT/30Hurr93tyL/2r7131Tfgaj/Q1hfY+K8J2Hy/XY72r7/xSL3LK
X6HHf/nI/1/9ce7G7K/96/+UFt2/ZG/6hn/4lU0A8uNUI6VdM5BO9+iVy2aLtOrrNhLzMC4rVzMl
2evlFpl+7vzd+CTudhGhjogrHpE0W5LZdD6huSXiAbBesVntltv1fsFh8ZhcNocD2shtytCAQBK5
TDRS1n9xt3sJMc3vAF2AZk7oDo/aGJ7qDO16CntKoBSjmiotMzU3kxR9zkBDRUdJS02z0rDWlDjv
Wl9hY2MxJ2R1Jm2NchN3e32RPKtOh4mLjY+3Uq9WVWQbf6GjOWl1oXFtqXuzpbk1g5WRw8XHybnA
mWucr7vZ22+Bpddht3fp3e+Lvsv3+fuHz2uxwjeQYL1OBf+nFbSHEKE+fw8hRgSjDN0ihhcxMmIi
L6OUhbk+dmznUGJJkxApBmwmkmVLixtdvmMYMqY1KcJO5tQ5LlVFKjWBXvxIEx9RbEEzkty5lKmp
nirTIZValJJRbhzvWZ36SmlTr1/LpPEJdWtZm1GwKtR61OzArmDhxk0GYGy1tnfZWvIjNK1bvFlv
gpM7mDAPNn8Rz2q1N2tfhYnZvSU8+athgZAx653F+Nczl2szwzssmHLppnVBh76bWoVnb65rslZ9
c7Rp215Rz9YtuvOKvr4dxwQ+nHhx48eRJ1d+PPBt5zvleFw+nXp169exZ0futvhu7yNxPhcfMfp3
8+fRp0f/G358e34+ZKuXP59+bPbu8YuDX59/f/+JP8lPQP3I+s/AAxFM6r4BGXSqwAQhjFBCm0hr
0EJRhphQww05TKjCC0EMy44OSSzRxNpCTPGMNeI70cUXVQtQxRnFYBHGG3FMUEYaeexilRZzDFJI
4Rbs0Ui6AgJyyCWZbKjII3lkxgbtqKzSyiuxTK7JLZ3YEcojpXyJS6rGLJMIL7/sEZ03zASszTfT
+TBNFdf8Cc5ulLxTxyfnDLGiuvQ0KNA30eyTTrIAHdQZRdss1FA/C/SB0bMm5dLRRy/0SdJKteHU
Uj4xZXCs4DylpNQmLw1V1AfTmnK9eVb6L89T1UtVVQFz/5PJzi5BinBWWtGz9Vb8cqVt10t6hfBX
YM0Tdtj2ij3sJcb22yOEStjEQVL4fiwkhWX9YjZIZ58VL9pARGDTMiPWDUalasPc4SdS2wJXXN3I
Lde5c2ON9F07E11k2391ibfg7+y9N0ZQ9TX3Qbv6LXivbCluVVt2582YYIhDS1jhzPJt2DR+o9IY
4437eGfgg1mm+NiFP4YxZJEpI1nMk9sFeGNpWT7ZZ3U9Bi/mF2emubCHMXH1A4MdIYRVnZPsFqry
dgt66L+KNloum/G8CuGrXcxaa7i49tqXbPEF+0Sxx64M6WDprVdtE9lu+7S35+Y17w7rtnupsve+
LPAJ+/H2WyfAB7858T3lNHwyxBfnOHJZGXY8LsgXt3pyIhu3fGu8N+c5dAML91wizBPXfHSRSjcd
JdBXVzx2+lp33R/UB1d9dqEqt50p3APXfXcnO/f9bsmFLzP54f0q3vi/Yd99eeYBc/75w6OffXrq
wbP++pOA33t77rv2/vuSUMtS/fXZb19L8uWr/fxwAobf/vPkn/+Y+u/vP23z9fcQ/vmPgJjJXwCJ
IQT3LZCBDXTgAyEYQQlOkILdASAC31NADcYPg7jZ4Afx18HjgZCEs7mgCHlSQhV2DIXQW+ELEXPC
FiKjgjW04Q1xmEMd7pCHxCkAADs=
------=_NextPart_01C89379.67477000
Content-Location: file:///C:/268254C8/arch_files/image004.gif
Content-Transfer-Encoding: base64
Content-Type: image/gif
R0lGODlhKgDSAHcAMSH+GlNvZnR3YXJlOiBNaWNyb3NvZnQgT2ZmaWNlACH5BAEAAAAALAMAAwAk
AM0AgQAAAAAAAP///wECAwL/hI8JwaEP4xJUOIlfqPXmv3Hdl4XiSEbmaaXQyrZuArPePMXi7dYx
n/LZcDndDif8IY0nICapc6qYwyC1ab1iQdptqXvkglHfMXlqPr/Sag2bIkVAqXHD/Fq/0yV6Zv7d
JgcIxzco42Z4SJOoKJgo1beHaAjJ6BSJp4Ap6WipiacFtOn3ydhY9FjqF7poSngwyonqCRvadRNL
WuuqmGuEy9sbDMzrEdnAOmt64avb/Gv3y2AxxhwFh30b/ZONac1NHZ4M1TAN9j28na7cUV4+/tsh
v0e+k01XzxHSZx71Lo4vmL5nfghKK/jvVr4No/rZ6FZt4b1Qc/Y1NOhPYDtp/+4i3jLjkI7Hj+fI
dRypMWQxjD9MulOZMd49fvnm0ZRpkyJCc8dY2vDZpOJJhTjZwJz35ujENEotvEQpsCkloQl1XqN2
UeY+qE0gllzlFCTQHWMH/nwpNahGOGU3rk0LCG7StmzXhr2K1GpKunf9VcVT02hgpoPFcvwb8C1f
qUOJ4l2aGFxewEUBUj6c9S07TzUsNpbUFl0xdV31nSPdDu3pzZaroV72eiBiaKybibaXNDbk1UlU
a2M9yNg63U4Zrta9tXWUTriTZ9pV2rms3rOXQ4d9nRZy3M9fo5XbyEcuUa7Il55snXnxp92z725P
3K2s+OBPsUN2nDl+b2uW8mqfVNx7SgCYWn7qmZWMKi3BdyBIhQT3YFwR5oaGhBM6+ISFF7qWIYUb
GtgfhmWI2CGJHzJY4W8kNNSDiSMmuCKIL84XI4xZ0FgjjjmmR8QddYgxIBHu6SNkK14UiRySRgaC
JE8/FsnADAUAADs=
------=_NextPart_01C89379.67477000
Content-Location: file:///C:/268254C8/arch_files/image005.gif
Content-Transfer-Encoding: base64
Content-Type: image/gif
R0lGODlhygIyAXcAMSH+GlNvZnR3YXJlOiBNaWNyb3NvZnQgT2ZmaWNlACH5BAEAAAAALAMAAgDE
Ai0BgQAAAAAAAP///wECAwL/hI+py+0Po5y02ouz3rz7D4biSJbm6QTqyrYBCsfyTNf2jef6zvez
GxAIh8SiAPjyKZfMpvMJjUqnTJfxis0eWdSu9wsOi8dkMUuLTme55bb7DY/L59CV+o7Hruj8vv8P
GAhnl1doSLQnqLjI2Oj4eEF4OEmZCHmJmam52aVC+QkqpMJJWmp6itrhGcr6OZoKGys7e7naeluZ
RLvL2+vrZYsrPPn6a3yMnHwSPNx8WKwciDRNXW19jZ2tvc3d7f0NHi4+Tl4OLhPkrO4aLb3+Dh8v
P09fby+sa8J8bw/dPpeOn8CBBAsaPEgvH4mARRgydHXnYR6JWhT+G4Qwo8aN/xw7HrQYgqKoISKf
RZwH8mKZkh5bunwJM2ZDfWtI4mJpM6HKODhl+vwJNOi7lKoqjkS0BZGtgOmCOAzm6ekRkvumTq16
hejOL03Nef0KNqzYsWTLmj17RqsGnE6NrGqas+tIpnFF0U1qNW9cuGrUbp3CV6jgwYQLn/QbKU3U
hjYdHn1r1bFjvW1zIs3bk+RfMoENe/4M+qdTEZk7Y6Y89+rjFqhRW2F8Gg/izU1Mh76NOzfB0SBK
X3b9+y1fiXdjs+ycGRFtMLZ1O38OfRhvD8kfBr6u1G7syNqPcvdeF7zs5cDERz+PPr3sI71PXi4u
yTtyqJXtLq2K3dBs8jyab/+xjhVVzQSYlW9oELiegOoteM90HCTXEYSt7MdfDv7F99+BEsomIYJ4
VbRhgdkxSCJK7BUlmmU6VViHefYxhSFKHfbkoYeKhVhijqE4uFZQZ/TDYot6KXVfkfcRKdU+rHX3
YYYK2odkV5Lg9yNVwhFCH33/4ajjgjxmwGWOFAZJw4X1OSXlj0au2dBrwkX55JJbormkkq/NSeeb
L64ZY5d+IjUmA2HqGCiZMJiZVFRydXcllE62qaCiI+Kl54dHMkocjI5WSmmjj9r4J4lfJqZfl4Ua
uoyLiaLZ5JaYjohVlXtGqScQT1q5aIGc3sppr4OG6tyoFXD5a0LqnIrqQqr/Sirpnotq2Sqcs+KK
ZZpTPqUmRW5qK1WTvgIL7lwPEiNTsWsk6wOiTnpaa7cIZssqk7CKVOSrbT7L7bz63hqun8JSgCOM
dGkJn5XZYauHp4+Cgiy6IS0rpb2dbrprnPgaPPG6mjJZ8aXVysvut/2G+u8EAcvH6GqW5ZdrcSuj
rGohDTv8gbof49mynLFua/G11CKJs7zOClxtpXdCO7K/J/ZYKmwDB6diauGJN5l/7NCsg7qYEb0q
0PxKaynCvNqZZtdu2WEkkSDHh3TShC4NpklzojyZcWm9J6ez290yM9bjDskKqPpN4yNahh+OeOLU
1NT3yXdJ9vJjU7vsVuUx/1fit4WXD25jNyBus5vbosdcsgQhsjz5XjAXbN7jke+YOQ5WP5OlrbsR
Do+5owfL+N8T4QqzqwJy/aLauvYctX6x3zA757L6ZPtNu7tdUukR6N5XJREub0PzN/b5Wd7aTz9y
9XBjgH1WyR+4/kfc1+C9rulDD3725PdrfuND1b8G/7u9X6bNee1Pz1PM/fDXuw3MTz19AyDABOg/
f4FqgQcsTP5QVMEGOtBkpNsZgShoOYT4D4QVFMwFfXdADW7weq374G9CyCDw0aiAepBZS0i4Dhy+
kDEN1KFRTLjCGMzHfpKTXNumFDZ3YcxuPpxU+6L2qw2R8DjTOyEKDdJEhv8FUYgqcw9sIjOcIoJR
at+pjOvImEVesW+HTUvQgH44OisqUCNpxNwWUQCX0yFRjKY5o2q++J1A1ocflIPhvRrDHYXVRWFI
bAtUwBgxil3nkTVayiLFdhVMCgxQxZLjHHeUJUTmMZILK4gK75gCoTXNj31M3afe48oIHguCzHjc
cMJoOchs52JbW13kWBkpOD4tZXbjozGJOT71nTKKsbzlMQFHSFQeSoDqi+XUfEk18KAum4SEZsKS
B0xobtM4r2OdtrC5S2EiMnjWdFo5GZZA6jCsblAjpyr/J81UEQuWXcQlMM9oxtQVMiFSbF073clH
Nb1zWtgaJ+sSxrZ6Cg//PpZMJzXhWLlTAqA0HhTnOsm4xIFoNJ8LEJz8vBavtZkTWpsEXikbtMZr
orM5Dg3hQ4nzS1fuzZBoPChOBfk6ctVwpPv8aE4/Ss9oknQZdQwXWxAKVEq5qKYJDV44dRnVnX5x
mFIdoz3LuNBkZpQ0Qu1pMbPqTZQsFY9NBdcM2VbRRG6Mn1595Vzo6TPtPCukDzUeOQlm1bhG9KI1
GeoIiHUtc4bNpQIZ6VoVYNISxvSN8mgrRn+XIsMetrIxcexjExBZyRbWGWm07GhtmFllliC0bbzh
Z9kq1h0ZsKyXDSQ+cmgiCwLFk2TFrUs8+1oEDBKzE5qt3CYLSL6ZVrQb/+Ftb0UVXDwSFmopXdfL
SJmo4TlKmZq0VIZkacDlMjcjzn0uA6Mr3WjNdq+nKdiZ+qnX9unSlkV8L0TSOl70lJc04u0HcNF7
gFH+TrFG/KN9/ylfcGJzuMQYaH7Ts9/NRue/AA6wfKojWF868q5YEigNd9nh+m5XZtZ5sJjiKcT+
7q/C0xxSjY7pug3/sZ5cHS1VWzmRc5pYVChGh4qlQ2EWW1icVIzqTZG6YPvatJ/+1CpET7tjCPf4
Bz8OXJCFPOTq4QfJI15pQ7Vr13IGtKKKeqtxoyxlzcquyg3G8g9oydpZVtO/EGIzmnOr2h2A9yP+
cHN6ZxTn23y4tnd+Tv+E4RfoeFjCz2/G7+fsXNk9z7nQE55yfxIN5CszWlDThaikOyu+2FKad2qu
zaeV2+dNB9DRtAv1De9021FXutR1GLSVF61qzbH61kigc685K2voHNoJsHZeqnOdtU4P6HB8Vpyz
nw1tsViaOd9AdhTih+ZTB3vS0DuftZeH7Qfbets5xnQ/vC2HY3/72srOoLbJ/Whzc1bTa143c9pd
xXfDW0Oubi66B4Fre7N71ynU976/Z3Bj0bt7ARf4E8Idx4QfvC8SN9HCy9QChwMG3zH09MQjzeAI
/dsNLtC4FCAuJgDJ++MceiJ5R74SIJhcSJCO0JVqTm6c8/APF585+jj/rt9iszx0N4Q5yX1+cqBP
uN9DF2nRe14mpA9c580ed9NhKnKo/0DqNCdktL8OdmmDWhsvsd5KuP5wpYv66pTliNARvnLpaR0d
aCe22mnLdtLSseL3qrLZOVP32tz9uExPrrHgeVyY+D3u/A7d3IUY+CoMfpWGR62c8ZzaxpqW8TZ8
vD5kHnk9Tx61Jb7v5YG9W82rmO8D7kPJQy96gkung08T8EvDbPvtptSMliRzlYp24YGx2bKct7LC
XZ9x2Cdb9rEuJX29StNmwtiZZ8XxV1mG8tMrmurqfaPnmapu5aNj9MSN05K/ysYZ+/Go1+cmVKlq
ShmBOndGj3n4xd/i/83XEHBXfTKXbTtTB+ViIWZkLnd49Jd53sdz3yd+2VdcLmZQMBZTSmYb4VSA
7ndjBoh5pMV9IDJLDPh5+Ld8+geB7ddVOtYaAWiCF1iCWAV/RKd9PqJ3ICiCrkd+bpQ3eyRXX+N8
EqWD80FgOsN7wRdWWLdsnlF8fwcmYceEyWdyDhg4UWh6uCFeINSBiReFFHaF+PSEN+hFU4iFoVGF
bSeGcpcq1ONzUChba0g7srZAW7h25KKFokODyaKGiJd3MYiHuqE7SvhzaDhzdwiGedh8UihsWXiG
SVOHqCKIcUiIhsiGc0NE9QBxnVR/n6SIaeiFRFR4P9VaeLd/g9hZD//ofqAoPcyHimNFE4DYhan4
gKXHbZ8Yhgg4ixuId7BoinyjbIPih6RyWqxXeaakia4ohbgYjG7kiHr4hee2h7QnSnele3G1UHvk
YLG4HnOoTpvodsNIgvRySSsTStYFYpkSRkYDjWB2TuGIMYlli5Z3SDRGffmRVu4VHii3T9hYWMbI
h9zYTSNWfRIIkGi1OuxFkPcUTBaVVVnEizeiYAFZHarxU3lUi+yDj8jlV9UFVxRVNy1FWvxohOYH
kOtnVQjJfgClU3Mmj3TVVmFSZxHIgrcHKOoXYu92OpfINGcGjw75TBYoHR7JjLnUTnVyfjIZIxaI
SwK5VdNSPJRRfFD/Vn7JVYEC6HIbtk0OWJMVSWgm6Ik6JZIdGYjauEal13/8N5RKhpIjyYJFBoDo
lH5k+JRQqYLzFVRnCV9ruYzhlYgWqYJhxpXgiEOLaCiNKFRiGZQ+9UKFZJQhqZbyyF5O5pZ3eTYZ
mVOXwpcSlV0J+ZZGgZVQ9oJi1Jcu2ZNfSYxsmINFo5EXiRzvCCmYmZABFZmYFF9J1I44WYjxh4x4
uYqcWJJxiZZIyTc+SYmQaEJUKIu1CYOQSWvm9T2qeZpLxJFLCZMTApwHKIqjCJaNVZynKBQtuZlu
NZ2z2XKDAYwvl5ludRh5iT/fiXqPaJx6aZ7Z053AAphkIpgTyZ7V/xmKdAif6OlU6qlo9zl7tymc
SLifuVk+/kmLAEqKtEk9uLla+ElXkbiJ8xkk9dlqTYihGZoNAtqgFMmfAYo9pYWghkaIUuSC64SR
IRdRjpQr0TmgO2egejeaPHUsI0pqedch/zeEZeSJG1Mr7NSegPKhnMQx5xibZemc6mdEAIKKFMoi
FpqATZejPGRge0mXFtVETxWfkeJPXRqKV3WUjdmifWGjfFiiJFZ7YPVMA3Rk/uiiHCqkMYqkack4
SmpMVVOEZCqacIhqhRdsLJkarsmTvdlXYElFW4qWnRmTFEiEn9mkZSpofvqnltemABWRbeqbujht
NTOB9XiSVMqoWv+Zp4oBqWIoqW7IOT4YWESGkM2pjOIip0kpYms6lKK6kwZ5LnsaQ+OZQcfZbZsq
T9moplvjQlSTYbPKlI+qq17Cq/dDgjPqq3H6oGk2HsvKrGy3XM0Knr1oAXxqelJUqpGKrcw1bJho
aKHlpBWihhrKru0qdllZRcCKQQdqre6ooLYJr06JnU6XnA/DihoHhd7KcjSSnR3Xr+0RhvPTlDIT
rlClgdAaPhIKp4NDo8eorzx2sJz6rfhAsDnUsBFanmUXpCHrnrJnfRerm5nkV6+kjrh3rG8astw6
LHi4kjqUrvwRsPgmsA9LssjJoIR1svlJqcQEpjpJp45ZsDL7QDb/JkqQ4UHEkxZykTbCI531ilkR
mTEqm1Et+oNJuiuNhF1g5nyCJY0X6S3qiB3sWE36WLEp25VjyUYZOLJKy0FMKzU+ejZ6JbU+2iwZ
E3c3Sx45S5Z+i0xcarTPd6J1qWOJa0/V+I+2mpgiYrEcB7e7qXtAuZN/K69XlFFVSpJdxqT24jFJ
+LEyxZqIabl2ypq2KqsDdZQJ8raeeqt527Y8S5exS6trqah9uLnmqkyeW6hLWUt8yzHEU7WtWFRY
a6WJel0/06oK5ZmpO1Eh5XHjeFSsVEBh+rNua5isq70r2IzSqiyaCbxzqTbDa7iLtbJaZLWwi7ng
y7x005Cfi36p/4u7XwqkFzioSem4QAe9xGq2jXq5oFsvCwqj0yqsjEm7zdK3jTK6uKo87eseygu/
WKoiG0moUlmXj+u4YsqbK9ijSWWN5FOuN2m30Lc+v3czE4O+VNtJpbsad4OlfXJTtcScQdW16rUY
/rjDHEkvvNeyP7jCMvSjJbs7JRw3ZXcy7Iu8uWgqBLS9R+yNiCpCS3w1TWyfXmK7JGrEEZeOQ7p3
SoXFBSsqCyuDXUyHz0O3pkOHMAyx96qpaFw+kgirCEyvY2yvcLyvctyWydjHQjt7R2OTSZyJEjyJ
erzH+TrCfrzFb6yZOjPIf0hQ5eLGOztxBjKxTjy5tZuFGLLGLP+Uxz3bXJV8yICcoByLgm43sptM
Y2erwLC5w5fppjIay3U8vqKsyKNsyFH8RDqXysJaynG8yBJryvl4kFyFzPVIfUirnRccyb7YP6QE
XsAHUlhEytvry8NsmbwMoVPks79ruVQZv6ubpTD0yRDwVLO7XqpDR9cMxH65KYFlZl67g2P7nLFo
e2oLkd4CSdEYSc9ZXXxsso8kgTJGNPB3quFLN2C8vPbTlda8y2FZld3bwdKHwh6VvylMtL8kpgi9
l1gl0C1pwQXmmoO7uv95llQslLvIliLkzuzXl8Ebt+f30DLtTR7dqjDdvcz8x6w8u5hKYDxqvgG6
ts/crRbZv0X/Hb3uE9E/dNDB98rOG83zO06q2rYO9b81TIDTq84PmcmtLMAkmZGaApsyun/n/ADp
fNJObboQjcdX25CJmdTvG85X+ssqmb9APaeRS3BT+qvBSb5U/Ck+PIFly9Rv7b4Lhkx4NZUU/bqj
Gpafibfj7ME5Hcy5jEWN/KKgytD+8tJJGpsgrXLpJ5kaNlfIs8jYB9paq02U2cOThMGXjbJ7R3wU
Z9Qz+68OJ7gfqdBFZ524XCIYdttLW8iI/c1DIcyKVy5k/MTnGavyec2EIbB8asXv6dx2nJ5NPduI
vJ7ATa0RcX+cy83jfdgAq7PcHa3HbbAcIticLIbRjd687d2z/9Z6z43Z4cMTDYcKAeuu/e3f4gCh
332Nnb17XisZMZYkbg0Y1UArr6cJUEqe8a3N9N15BN5kGyyXJwjBavVwCQ3ebOAIEC5CEl7MAj7g
9t3S5Gy0XNgDHs5rgIuwlizbEi7jBlzf2E3TLlWpDd0gLW7GaOoOjuxvJF7iXCyHBC67Kn60LM5w
vhzenHGdiUzkPg0azKTSF864JllfP6Z12pppdCDiHzHl212G8KTS3hXa07iqc+2VPibj+m0GUd6P
Yz7hBCpbZz7n2epjSAjjoFzjAh3ff67e133LRd52bD4ghyLoBdIGYZ7ZdE7m4qmLeE5QfsdUwdLn
nCbkdATpHv9oqmaI4p69EIsO3nG+6RHe6YYepXfe2aZyWKROYvd26iOe6vctsoGM5EQN6G1OHbDe
Zp0g5/Jd66u5nVY43HWbxfe9egjr6lTg6Pg67JGuyh/Y6tJe57MewQ/i61a2cdj+6NHu6fOHW3ge
L/qcokyZ4Ewuyd45dbmx7RGnxP9J7t970S2jzMLou+yedt6uei7e6T/uCqV17GzM1j/tqCkpxpHw
7su27wv/duAuuXwWnOQ+OVktz4zbWIR8xHbH7/0O8Pf68Qx5bhSfu3w91JS47lUkeB3f7xDvPJQY
8hkbrMZs8F2d0Sh/1CUEmM8uUl5O5D5vdfRH8nWVw1S7MEH/PxQ5L1mLyPM97/K8NiE+XyrtLSa4
Ta5K0PSa9/Q3kdAPH39UH9zEPV40mPVbT4XXMIpgD10ET5tb6Z5/DoL8/d9zT/fYIKUDD8rFnda3
OVwi7d6/1R/nbfY2vm9onUq5renIOEh+TeUe8X27Pfi9nXN4j85tvPfuuPgryyoIQ+qeJ7he74ox
f+1Dzq8DS/mXr/clRXhhNVcUhYS6lrzHWJOOLOiWiNKmr/Yz7iOH30ZB7ZlBK56yI/hsy9K0L93E
/JiFf/q8H+DB3wCACr+pWYKGMXefv1VkW2NLzVe9p88ue+DLaeDG02HSfI7dn9wHZ/jPv9nUr/7a
U2KUI/3E/7+dzDP87zd934S/jwu54Hg5RZuWVUkAkQxPL/dhlMtNe3HWm3evjQAYydI8UbSagvZp
E7ih3Llu7k/3RHWnGEDHKvaaGX9J5aWXcj6hpKIuBrsNj8gVjdkNYo9bMTArGYfJ56A2O10vI1v4
nF63h6L5pxzJAP/TpsDs4JpM+DhCIBTL/Nj6CCNB9Cj13HgayRxxauQE48xkvmhEEa5IBxHfRllN
U19E3S5L61Qlb3El8Sp5AWwf+2TbMnOpfJY8FzUrUn+LCQ17pX2JQaoBWZNtQJXRhi0+v1chvwfT
ls+zzaCf293pdqfzfq0ysTe/ct4nD+e0YZlBkmFuHzR50/8udUiIblOndTgeNhRWLl0VhizS4Zv4
ypQ3jZrgFRQ5MkO8g3sw3GN4Tw1JFiecuYwos9DJXgs34OS0jBGfWGJyuJA1JOgpiBzH0SrVjGgZ
oR4t7gSZJCZNq+yi2YSZEqI6qBSr0YxW9WrYsgq1UtJZ8uxZsm3NKoQ7VxeCtE7oMXLFJR9SWm3H
0hUcKevdY2+nDt6HGLA/xY+p2jW8FTJJQ4wrZ24wGeU4a5pBh54pmrQNzv1KP7ucmvWi0ynWcm09
WzBm2jJNnrZ9O6UU3q0L644L7ndxscYr5+a8G7nrEcybjwy+fDjG6NdVY68t+TU17T+aQP/ebvrk
2F5uedL/V328VfHta3F//b55D/ro4e8of/c8cVwtCyIov5wGvEo58wpM5LnsEvxgv7T6sy49bqRL
rEH/LqzwwZPuM84+aH5az5WA/tJuQ5sifCgEZowapQqCBhLCEX2eUqaoF/eSapsVAbquwwzlOlGe
H38T4ceAPEOyI/Z4E3JIJrtxyKt8wAJGSin9AOqrVprpaiLkiATSGicRssLMM9FMU8012WzTzTfT
9C4kYMgxJ8zByJQmRW5YEkebMzjyi0JALxLUs+LuFLOLPLtr1FGt7owlpRYPre/RPaMMRFJxRrTH
z089bWPTvlpkykdFA5Tv0VVZpe6OK1nAUsnxGOUFUytD/+Uyo4z65LTKL/8RMNHjUH3nwFaRTdZW
duicys4Ba1ULSlynDHQhYEFdD9YlDdW1FQ+LNVZVZcktt7P4mm3k2fyitWRaXkkByM6e+FwJpBqN
KCrLrnIEtV8ww3XnWHMJNvdIWIhh8V5oHb3VQsgADJgKibNrt+CL+SMsxn850WtWWht+V2TLEhu2
QJMpHhjjlS+l2L2QK8UPYhFRZtflXFRmWWfhbnbJ4igcHrnn22oOOOedkYZwaMtgxqzopeF6utij
k676SagDbFo/rKHlOr6frQ4bNa/J03pismlFu5BxxW5bT7VVU1PpmJmA0+678c5b77357tvvNOFW
gmq3Cf+HjdnAN0MzY7oR37rxrsEuvGqpMUTVPjMXp3xpzR8/LnLJkeacQsufs8KwoDuXOXXsBgcd
9INtuPFFooLi+K8Swakdd5ylwBxSoVdHpZ7go2vd9cJhXxKf5ZUstdDPqATemN6p51B64s8k/tTP
j185eSSD7WYNnIiQbVepxzqkXdS171jE9mkzvvu2v083KUrJF19CjxivZZ5a2Qe/4cEPXNybX8Hq
xxP8ycp+aDIf/9CnljwFsH0DJGCR2HbA7nVoXZlS18KSggk6PW2CTqJgBUV3QZxlUIOu4yAIPfiG
df0jLuUbn7HK5K7+qXARKeRhXQzYwnK90ClF/Bb+nlf/HaTssCZDetAJfxhF1shPiEkj4g07Fq9O
ddB2NMrdrEiIovJAMW5+c8vf0JhGNa6RjXAiWRCrqCwfLgZi/AkOGeEBuELokY5S7KNIqBjHnc1R
XI8xYAsok0IHAjJ7K/RjIQHJQkG6jZBT081qmLjH3RnIgnN6JHneOMkDVlJMcKweHuv2PkNu0kGf
FFgoRblBV5rhUlgCkSpF08lWzrIYogtkLDFGSiCZEiZ6yaMwdYFL1fHycKkiJjBhxsxn9kOZCqkm
oq5JDmY2k47ThOZ8tilJBHHMQchkZCImpUtuenI0c/IlLL/5ujt4zZslEARiWMmuatoCfXXRnz99
Bs94/yJvbdf7p4eQNYuYvK+RtUDEQ42lCn7+cZ4HXWeqNDRQFyLjYeDxUbKuNdHKZVI29wkTRJfZ
k1N0ggg0U56O/qUUY+aoCCztUaxYcqObkrSjvRSnRkMnuBjdDpfDG2AnNwZTwID0GrF6IE/9Y9L0
0DAUS9lIVJboJXttKSrB8FI4QuiNjcBLcAIFKiXLyq+sghCMPLmIW+QIJWfYsF880mK9IrKU2Cm1
otq06J+SuAoBLe9Xg8qWhQgl2F1xNKNnldxuZvjXvMaQf1BND7lSlM2G/gGsPkEpNrb1n4+N7l6j
YopQGIiKu5rJV9XSFEtpV5E4HDWbTxVXPR27OMdhkf+uflVPQoC71Lgyjiw27NVgiwoWlfynp2F1
bWu92tprlYyshPUCWHsKnXfiNrdzOxtvG9rDBWI3S6wtC3dRQw8RkpWzJSLvR+BbtPOEj1uBVQNn
C/ut/MJXfOE4bnOh58zuPna34NsljD5o2V4arIa7ZO9i+6tYryx3hSLVX42WiDukekynqu3hlvry
RV51WEe22e6ACfpdA/s1hsalrILvwOCY4bPF+3UrXhsCYeaac3UnRjHhGNPBwfK2tDfWr88IFpsg
m7fECsQpv0R1XBLyOHU+/jFaeYCv8RXVqrPbsjHzicMkh4XKtqVLmR9n5SvTLzVlRq/hDoXmkW4n
nAD/FfCagZyZ0Z43mGQGTW2JVeeLgvLNeD6InOVVG+/5uYKCJoxZDR02RCeHZTqZdJvNfOllMtYt
kI601TSt6EozWnv8bKl72lnQXHr605ODW6GhsJZ+WjR+k/pwoFmc1lU3ttVYpmdQ41wh1nEFC7H1
00q7GlNu0cghOIryTbssIxZNG5J37rWvoQZroJGaovUhtoyei9/6cum90QPtg8uBrSNPiNfXZnO2
XV2pIL9UpsWWFbJ3WhuR0ktXgdqqt+jrQQr7+7AYjaS23a2nUEsH4duecTm5KluudhZPD1cAxbfh
vmwdVcfzupJRDQtiJocZXQdPOIFTJrb5OnisNQ53/3Iszu9XCOvf0Q34uQ9K8HUDmJ3dPPljFx63
d6tXLiI3yn+fTWcL98qI/FW3dQGOcaY//Us+bffPsZ2hhlciQsWtrsTjS925DNm+XtypX2oXBi1t
WSMkvoLz7kpO5l4d6/QLOohSvFC9R1ys6Obvefdsou+oue55TtDWbyLXMVF7tVptctI7TethC57u
hbe7PjeaSWXefaqp9hHnv2ttywN98IhHiMgkqiiUOrrkoh896etj+qs5zSfDTD3rW+/z128Q9Llr
YQBJTqt94j73t939KAF9ZkQKEYrJ91BVej80wh//eM7n5CTxGPwmJT/6PZs+9atvfUbKfpxHEr9m
tPwveeI72PXgRz6VYfBNVIq3+4mOzPpV3X73a1Cdi4n/QOcPpziv/0IP/zyq8vaP+QjwVf7vrAIw
nc6vjCJwzgyQ/XQvAeWPyZDBdH7sARMhvCJKA+2sAgvQ+DDQsdLo0zwQPPhIqBap20hwvfTvBGlQ
o1aQAfvmjNpoB3mwB33wTVitBoUQmG4wBo0QnchvCJWwO4rwCJ1wUZYwConQoJ6wCoNECrFQkGbn
B7mwC73wC8EwDMVwDOshCbPwDE/PCtVwMdCwDWVpDeFQNdxwDlEuDu1QF+gwD9/tDvnQf/TwD62o
DwXRHwCxEHWGDBExERVxERmxEbnQEAGgAAAAOw==
------=_NextPart_01C89379.67477000
Content-Location: file:///C:/268254C8/arch_files/header.htm
Content-Transfer-Encoding: quoted-printable
Content-Type: text/html; charset="us-ascii"